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Abstract—For a linear time-varying singularly perturbed system with a small parameter µ for
a part of derivatives and quasi-differentiable coefficients, existence conditions are established
and µ-asymptotic composite full- and reduced-order observers are constructed. The error in
estimating a state with an arbitrary predetermined exponential decay rate converges to an
infinitesimal value of the same order of smallness as the small parameter. The observer gain
vector are expressed in terms of the gain vectors of subsystems of smaller dimension than the
original one and independent of the small parameter, and the parameters of the original system
are subject to weaker requirements than those previously known. A constructive algorithm for
calculating the gain vector of a composite observer is presented.
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1. INTRODUCTION

The problem of estimating the states of dynamic systems using available information is relevant
due to its importance for various positioning systems (location determination) of control objects.
However, in real situations, direct measurement of the state vector may be difficult (for cost reasons,
due to technological limitations, etc.). In this case, states can be estimated using a specially
constructed dynamic system called an observer (estimator). The observer’s input is the output
function of the original system, and its state must, in one sense or another, approximate the state
of the original system [1–6]. If, with increasing time, the state of the observer converges to the phase
vector of the system, then the observer is called asymptotic. If, in addition, there is exponential
convergence, then such an observer is called exponential.

The definition of an observer was first introduced by Luenberger in his dissertation in 1963 (see
also [7, 8]). He showed that for every linear system being observed, an observer that is itself a
linear system can be designed with the estimation error tending to zero at a given rate. In this
case, the task of constructing an observer comes down to choosing the gain, which is calculated
from the system parameters and does not depend on the output [8].

Singularly perturbed systems (SPS) with a small parameter µ for a part of derivatives are
widely used in applications in aviation, chemistry, electrical engineering, mechanics, etc. as models
of multi-tempo processes when simulating the dynamics of aircraft, chemical reactions, movements
of robotic manipulators, etc. (see reviews [9–13] and references there). For SPS, depending on the
information about the small parameter and the needs of the applications, different formulations of
observation problems can be considered: with a known value of the small parameter µ [14], for a
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known closed interval of values of the small parameter µ ∈ [µ, µ] ⊂ (0, µ0] [15], for an unknown value
of the small parameter µ [16]. Formulations are also distinguished depending on the composition
of the components being evaluated: estimation of both slow and fast components, or only slow
components (see [10] and references there). In applications, the exact value of the small parameter µ
can be unknown. Therefore, it is important that observers provide a “good” state estimate for
the entire µ-parametric family of SPSs for various values of the parameter µ. Observers provide
estimates of the system states in conditions where the system model is not precisely known, are
called robust observers.

Depending on the dimension of the observer full-order observers, the state of which has the same
dimension as the state of the observed system, as well as reduced-order observers, the dimension of
whose states is smaller (by the dimension of the output), are distinguished [1, p. 379]. Identification
in the SPS of fast (parasitic) dynamics, when describing which a small parameter appears in the
model, allows us to further reduce observers.

The use of the multi-tempo structure of the SPS allows, when constructing observers, to operate
with systems of a smaller dimension than the original one (see [14, 16, 17])—subsystems of slow
and fast movements separated by time scales. In this case, the gain for the observer of the original
SPS can be calculated as a composition of the gains of separately designed observers of the slow
and fast subsystems. This approach for constructing a composite [14] observer is used in [17] for
linear time-invariant SPS (LTISPS). In [16] for the LTISPS the concept was introduced and the
construction of µ-asymptotic observers was justified, for which the state estimation error with an
arbitrary predetermined exponential decay rate converges to an infinitesimal value of the same
order of smallness as the small parameter. In [14] the construction of a µ-asymptotic full-order
observer for a linear time-varying SPS (LTVSPS) is described, but the rules for constructing such
observers are not given there. Research on the design of observers of slow states of nonlinear SPS
can be found in [18–21] and the works cited there.

Many real dynamic systems are described by models whose parameters depend on time. Con-
structive methods for the analysis and synthesis of time-varying systems can be obtained for systems
that can be reduced to time-invariant [22].Time-varying systems can arise during the linearization
of time-invariant nonlinear systems. Linearization of time-invariant systems can lead to a decrease
in the smoothness of the system parameters. The use of the quasi-differentiation apparatus [23, 24]
allows us to expand the class of time-varying systems for which it is possible to obtain constructive
results.

When we consider deterministic observation systems, state estimation assumes that the system
has a certain type of observability. For a time-invariant system, complete observability guarantees
the existence of an asymptotic observer [2]. For a time-varying system, its uniformly complete
observability is required. However, this property is difficult to verify in terms of the coefficients
of the original observation system, and therefore, from a constructive point of view, it is not
very effective. The approach proposed in [5] based on the quasi-differentiation technique makes it
possible to constructively construct observers for uniformly observed time-varying systems, while
weakening the known requirements for smoothness of coefficients.

Issues of SPS observability were previously studied by the author in [25–30]. The contribution
of this work is that, in contrast to [25–30], the problem of constructing observers is studied; in
contrast to [5], a singularly perturbed system is considered; in comparison with [14], a constructive
algorithm for constructing a composite exponential LTVSPS observer has been developed, while the
requirements for the smoothness of the system parameters have been relaxed; in contrast to [16, 17],
time-varying SPS is considered.
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2. FORMULATION OF THE PROBLEM

We consider a linear time-varying singularly perturbed system (LTVSPS):

ẋ(t) = A1(t)x(t) +A2(t)y(t), x ∈ R
n1 , y ∈ R

n2 ,

µẏ(t) = A3(t)x(t) +A4(t)y(t), t ∈ T = [t0,+∞),
(1)

with scalar output

v(t) = c1(t)x(t) + c2(t)y(t), v ∈ R, t ∈ T = [t0,+∞). (2)

Here µ is a small parameter, µ ∈ (0, µ0], µ0 ≪ 1, x(t) is an unknown vector of slow variables,
y(t) is an unknown vector of fast variables, Ai(t), i = 1, 4, cj(t), j = 1, 2 are continuous matrix
functions of compartible orders and row vector functions bounded on T , respectively, v(t) is a
measured output function.

Let in the LTVSPS (1) some fixed value of the parameter µ ∈ (0, µ0] was implemented and an
unknown initial state

x(t0) = x0, y(t0) = y0, x0 ∈ R
n1 , y0 ∈ R

n2 , (3)

which, due to the system (1), (2), generated a process {(x(t), y(t)), t ∈ T}, inaccessible to direct
observation and a error-free measurable output function v(t) = v(t, µ, x0, y0), t ∈ T . It is required
to estimate the unknown state (x(t), y(t)), t ∈ T using the known function v(t), t ∈ T . To solve
this problem, we will construct an asymptotic observer.

Let’s denote n = n1 + n2, z
′ = (x′, y′), z′0 = (x′0, y

′
0), the symbol “ ′” (prime) indicates transpo-

sition.

Using the LTVSPS parameters (1), (2) we define the vector function c(t) = (c1(t), c2(t)), as well
as the matrix function depending on the parameter µ > 0

A (t, µ) =







A1(t) A2(t)

A3(t)

µ

A4(t)

µ






. (4)

Then the system (1)–(3) can be represented in the state space R
n

(Aµ, c) :
ż(t) = A (t, µ) z(t), z ∈ R

n, t ∈ T,

v(t) = c (t) z(t), v ∈ R, t ∈ T,

z(t0) = z0.

(5)

Let us identify the system (5) with the pair (Aµ, c), consisting of the matrix functions A(t, µ)
and c(t). Let us represent the matrix A(t, µ) (4) in the form

A(t, µ) = diag

{

En1
,
1

µ
En2

}

A(t), A(t) =

(

A1(t) A2(t)

A3(t) A4(t)

)

. (6)

Here and below, Ek denotes the unit k × k-matrix.

By (6), the system (5), defined by the pair of matrix functions A(t), c(t) and a small parameter
µ ∈ (0, µ0], is also identified with set {A, c, µ}. If the parameter µ takes all possible values from
the interval (0, µ0], then we obtain a µ-parametric family of systems {A, c}µ0 , which is considered
as a single mathematical object defined on T × (0, µ0]. Fixed µ ∈ (0, µ0] distinguishes a specific
system (Aµ, c) from the family {A, c}µ0 .
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Let ρ be some positive number.

Definition 1. System of differential equations

ẇ(t) = A(t, µ)w(t) +K(t, µ) (v(t)− c(t)w(t)) , w ∈ R
n, (7)

is called a full-order ρ-exponential observer of the family of systems {A, c}µ0 with a gain vec-
tor K(t, µ), and an estimation coefficient cρ(µ) > 0, µ ∈ (0, µ0], if for any t̄ > t0 the estimation
error ε(t, µ) = z(t, µ)− w(t, µ) satisfies the inequality

||ε(t, µ)|| 6 cρ(µ) exp(−ρ(t− t̄)), ∀t > t̄,∀µ ∈ (0, µ0].

A method for constructing ρ-exponential observers for uniformly observed time-varying systems
with quasi-differentiable coefficients was proposed in [5]. For any fixed µ, this method can be
used to construct the LTVSPS observer (5). However, the following problems may arise: in the
general case, the observer’s parameters will depend on a small parameter that may be unknown in
advance; when using the method from [5], the existence of the canonical Frobenius form and the
construction of a corresponding parameter dependent transformation matrix for a high-dimensional
SPS are required. In this case, for µ → 0 the transformation matrix in the general case will be
ill-conditioned, and the elements of the canonical Frobenius form tend to infinity. Therefore, it
is relevant to develop methods for synthesizing observers that are robust with respect to a small
parameter, which do not use knowledge of the value of the small parameter and provide “good”
estimates of the state for any sufficiently small values.

The conditions for robust P -uniform observability of a linear time-varying two-time-scale
LTVSPS, necessary for constructing ρ-exponential observers, were obtained in [31].

We denote by O (µ) a vector function f (t, µ) on the interval
[

t1,∞
)

such that there exist con-
stants µ∗ > 0, d > 0 such that the Euclidean norm ||f (t, µ)|| satisfies the inequality ||f (t, µ)|| 6 dµ

∀µ ∈ (0, µ∗], ∀t ∈
[

t1,∞
)

.

Let r(t, µ) > 0 be a given function bounded on T × (0, µ0].

Definition 2. The system (7) is called a full-order ρ-exponential observer with a bounded on
T × (0, µ0] error r(t, µ) for the family of systems {A, c}µ0 if for any t̄ > t0 the estimation error
satisfies the inequality ||ε(t, µ)|| 6 cρ(µ) exp(−ρ(t− t̄)) + r(t, µ), ∀t > t̄, ∀µ ∈ (0, µ0].

If in (7) K(t, µ) = diag {En1
, 1
µ
En2

}K(t), cρ(µ) ≡ cρ, µ ∈ (0, µ0], and for some n, n = 1, 2, 3, . . . ,
the equality r(t, µ) = O (µn) , t ∈ T , is true then we call (7) a robust µ-asymptotic ρ-exponential
observer of the LTVSPS family (5).

The definitions introduced above are consistent with the concepts from [5, 14, 16, 34].

Robust µ-asymptotic ρ-exponential observer of the LTVSPS family {A, c}µ0 (5) performs uni-
form (on µ) asymptotic (on t) estimation of the state vector (x, y) of any system of the LTVSVS
family (5) with a bounded error, which has an order of smallness no less than µ. Its gain vector
is calculated independently of the small parameter and provides such estimates of the states of
systems of the LTVSVS family (5) that the estimation error with an arbitrary predetermined ex-
ponential decay rate tends to an infinitesimal value of the order of smallness no less than the small
parameter.

Problem 1. To construct for the LTVSPS (1)–(2) a robust µ-asymptotic ρ-exponential observer.
In this case, the gain vector must be expressed by gain vectors of parameter-independent sub-
systems, constructed according to the LTVSPS (1)–(2) and having a dimension smaller than the
original one.
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3. LTVSPS SUBSYSTEMS, THEIR OBSERVABILITY AND OBSERVERS

3.1. LTVSPS Subsystems and Their Connection with LTVSPS

Solving problems of analysis and synthesis of SPS is often simplified by using the asymptotic
decomposition of SPS into subsystems of smaller dimension. This paper describes a constructive
method for constructing observers for the LTVSPS, using the asymptotic decomposition of the
LTVSPS and implemented through the construction of observers of associated with the LTVSPS
(1)–(2) independent of the parameter µ a degenerate system (DS) and a boundary layer sys-
tems (BLS) [32], which are obtained from a singularly perturbed system if we consider it separately
in the “fast” and “slow” time scales at µ = 0.

Let det A4 (t) 6= 0, t ∈ T , i.e., a standard LTVSPS is being considered. Then the DS (slow
subsystem) has the form

(As, cs) :
ẋs (t) = As (t)xs (t) , xs (0) = x0, vs (t) = cs (t)xs (t) , t ∈ T,

As (t)
∆
= A1 (t)−A2(t)A

−1
4 (t)A3(t), cs (t)

∆
= c1(t)− c2(t)A

−1
4 (t)A3(t),

(8)

and is a time-varying n1-dimensional system. Let us identify it with the pair (As, cs).

The BLS (fast subsystem) for the LTVSPS (1)–(2) has the form:

(A4(t0), c2(t0)) :

dyf (τ)

dτ
=A4(t0)yf (τ), vf (τ) = c2(t0)yf (τ), τ =

t− t0

µ
∈ Tµ ,

[

0,
t1− t0

µ

]

,

yf (τ) = y (t0 + µτ)−A−1
4 (t0)A3(t0)x0, yf (0) = y0 +A−1

4 (t0)A3(t0)x0,

(9)

and is a linear time-invariant n2-dimensional system. Let us identify it with the pair (A4(t0), c2(t0)).

Along with the time-invariant BLS (9), we introduce a t-family of fast subsystems (A4, c2)(t)
of the form (9) with A4(t), c2(t), (where t ∈ T is a fixed value, considered as a family parameter)
instead of A4(t0), c2(t0). The BLS (9) is isolated from the t-family of fast subsystems (A4, c2)(t)
when t = t0.

Note that the DS (As, cs) (8) and the t-family of fast subsystems (A4, c2)(t) (9) are defined for
the entire family {A, c}µ0 immediately.

The following statement, which follows from [32, Theorem 6.1, p. 227], establishes a connection
between the solutions of the LTVSPS (1), (3) and its subsystems (8), (9).

Statement 1. Let the roots λ (A4 (t)) of the characteristic equation det (λEn2
−A4 (t)) = 0 of

matrix A4 (t) satisfy the inequality Reλ (A4 (t)) < −γ < 0 ∀t ∈ T , γ = const > 0; Ai (t) , i = 1, 4
are continuously differentiable on T , Ȧk (t) , k = 2, 4, are bounded on T . Then there exists µ∗ > 0
such that for all µ ∈ (0, µ∗] the functions

x1(t) = xs(t), y1(t) = yf

(

t− t0

µ

)

−A−1
4 (t)A3(t)xs(t), t ∈ T,

where xs (t) , yf (t) are solutions of the DS (8) and the BLS (9), are 1st-order asymptotic approxi-
mations of solution of the problem (1), (3), uniform on t ∈ T :

x (t) = x1 (t) +O (µ) , y (t) = y1 (t) +O (µ) , t ∈ T.

3.2. Observability of Subsystems

In this work, when constructing observers for the DS (8), we use a method that imposes weaker
requirements on the smoothness of functions, compared to previously known ones, and uses the
concept of quasi-differentiability with respect to some lower triangular matrix Ps, a system of
class {Ps, n1 − 1} and uniform observability of the DS. Let us introduce the concepts related to
this.
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For an arbitrary non-negative integer k, we denote by Uk(T ) the set of all lower triangular ma-
trices P (t) of dimension

(

(k + 1)× (k + 1)
)

with elements pji(t) continuous on T (j, i = 0, 1, . . . , k)
satisfying the condition pjj(t) 6= 0 (t ∈ T ), (j = 0, 1, . . . , k). For an arbitrary matrix P (t) from the

set Uk(T ) and a continuous function w : T → R quasi-derivatives j
Pw(t) of order j (j = 0, 1, . . . , k)

with respect to the matrix P (t) are determined according to recurrent rules [23]:

0
Pw(t) = p00(t)w(t),

1
Pw(t) = p11(t)

d
(

0
Pw(t)

)

dt
+ p10(t)

(0
Pw(t)

)

, . . . ,

j
Pw(t) = pjj(t)

d
(j−1
P w(t)

)

dt
+

j−1
∑

i=0

pji(t)
(

i
Pw(t)

)

(j = 2, 3, . . . , k).

(10)

It is assumed that the differentiation operations in the formulas (10) are feasible and lead to
continuous functions.

Let some matrix Ps ∈ Un1
(T ) be given. Following [24, page. 31], we introduce the definition for

the DS (8).

Definition 3. The DS (As, cs) (8) has a Ps-class m if each of its output functions vs(t) = vs(t, x0),
t ∈ T, has continuous quasi-derivatives with respect to the matrix Ps up to order m inclusive.

Applying Lemma 2.1 from [24, p. 32] to the system (8) we obtain

Statement 2. The DS (8) has the Ps-class n1−1 if and only if for any k = 1, . . . , n1−1 following
row vectors exist and are continuous

ss0(t) = ps,00(t)cs(t), ssj(t) = ps,jj(t)
(

ss,j−1(t)As(t) + ṡs,j−1(t)
)

+
j−1
∑

i=0

ps,ji(t)ssi(t). (11)

In particular, the DS (8) has the class {Ps, n1 − 1} with respect to the n1 × n1-matrix Ps of the
form (18) from [5], constructed according to the parameters of the DS (8).

Definition 4. The DS (As, cs) (8) of class {Ps, n1 − 1} is called Ps-uniformly observable on the
interval T if for any x0 ∈ R

n1 mapping

xs(t) →
(0
Ps
vs(t),

1
Ps
vs(t), . . . ,

n1−1
Ps

vs(t)
)

, vs(t) = vs(t, x0)

is injective for each t ∈ T .

Definition 5. The t-family of fast subsystems (A4, c2)(t) (9) is called completely observable
on Tµ, if any subsystem from the t-family (t ∈ T ) is completely observable [35, p. 68; 24, p. 29].

Let the DS (As, cs) (8) have Ps-class n1 − 1. Let us define the (n1 × n1) observability matrix of
the DS (As, cs):

SPs(t) =











ss0(t)
ss1(t)
. . . . . .

ss,n1−1(t)











, (t ∈ T ),

where n1-row vectors ssj(t), j = 1, 2, . . . are determined by the formulas (11) and (n2 × n2)-
observability matrix of t-family of fast subsystems (A4, c2)(t):

Sf (t) =











sf0(t)
sf1(t)
. . . . . .

sf,n2−1(t)











, (t ∈ T ), (12)

where n2-row vectors sf0(t), sf1(t), . . . are defined by the formulas

sfj(t) = sf,j−1(t)A4(t), sf0(t) = c2(t). (13)
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Applying the conditions from [35, p. 68; 36, p. 89] to the DS (8) and to the t-family of fast
subsystems (9), we obtain

Statement 3. The DS (8) of Ps-class n1 − 1 is Ps-uniformly observable on T if and only if
rank SPs(t) = n1 ∀ t ∈ T .

Statement 4. The t-family of fast subsystems (A4, c2)(t) (9) is completely observable if and only
if rankSf (t) = n2 ∀ t ∈ T .

3.3. Observers for Subsystems

Let ρs, ρf be some positive numbers.

Definition 6. A system of differential equations

ẇs(t) = As(t)ws(t) + ks(t) (vs(t)− cs(t)ws(t)) , ws ∈ R
n1 , t > t0, (14)

is called a ρs-exponential observer of the DS (As, cs) (8) with the gain vector ks(t) and the estimation
coefficient cρs > 0, if the estimation error εs(t) = xs(t)−ws(t) satisfies the inequality ||εs(t)|| 6
cρs exp(−ρs(t− t̄)), t > t̄, for any t̄ > t0.

Definition 7. A system of differential equations

dwf (τ)

dτ
= A4(t)wf (τ) + kf (t) (vf (τ)− c2(t))wf (τ)) , wf ∈ Rn2 , τ > 0, t ∈ T, (15)

is called a ρf -exponential observer of the t-family of fast subsystems (A4, c2)(t) with the gain
vector kf (t) and the estimation coefficient cρf > 0, if for any system of the t-family (∀t ∈ T ) the
error εf (τ) = yf (τ)−wf (τ) satisfies the inequality ||εf (τ)|| 6 cρf exp (−ρf (τ − τ̄)) , τ > τ̄ , for any
τ̄ > 0.

We denote by L(n1) the set of all invertible n1×n1 matrices that are continuously differentiable
and bounded on T together with their inverses. The set L(n1) is a Lyapunov group [37]. The
action of the group L(n1) on the pair (A, c), consisting of a n1 × n1-matrix function and a n1-row
vector with elements continuous on T , we define according to the following rule [24, p. 42]

G ∗ (A, c) =
(

G−1AG−G−1Ġ, cG
)

, G ∈ L(n1). (16)

Using [5, 31], it is easy to verify the validity of the following statements.

Statement 5. If for some Ps ∈ Un1
(T ) the DS (8) is Ps-uniformly observable and for it there

exists a canonical Frobenius form (A0
s, c

0
s),

A0
s (t) =















0 0 0 . . . 0 α0

1 0 0 . . . 0 α1

0 1 0 . . . 0 α2

. . . . . . . . . . . . . . .

0 0 0 . . . 1 αn1−1















, c0s (t) = (0, 0, . . . , 0, 1)′, (17)

relative to the actions of the Lyapunov group L(n1), then for any ρs > 0 there exists a ρs-exponential
observer (14).

Statement 6. If the t-family of fast subsystems (9) is completely observable, then for any ρf > 0
there exists a ρf -exponential observer (15).

Observers for the DS (8) and the t-family (9) can be constructed by applying for them the
method of constructing ρ-exponential observers from [5, Theorem 5].
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3.3.1. Scheme for Constructing a ρ-Exponential Observer for a Time-Varying DS (8).

1) Let the DS (8) be uniformly observable (Statement 3) and for it there exists a canonical
Frobenius form (A0

s, c
0
s), with respect to the actions of the Lyapunov group L(n1) [24, p. 69]. Let

us denote by αs(t) = (α0, α1, . . . , αn1−1)
′ n1-vector column of coefficients of the matrix A0

s(t).

2) Find the transformation Gs(t) ∈ L(n1) for which Gs ∗ (As, cs) = (A0
s, c

0
s).

Note that to construct the canonical Frobenius form and the corresponding transformation
matrix Gs(t) from the Lyapunov group L(n1) you can use the method described in [5; 24, p. 81].

3) Choose real numbers λ1, λ2, . . . , λn1
, satisfying for the given ρ > 0 the inequality λi < −ρ,

i = 1, 2, . . . , n1.

4) Construct a polynomial (ξ − λ1)(ξ − λ2) · · · (ξ − λn1
) = ξn1 − βn1−1ξ

n−1 − · · · − β1ξ − β0 and
let βs = (β0, β1, . . . , βn1−1)

′ be n1-vector column..

5) Calculate the gain vector ks(t) for the observer of DS (14):

ks(t) = Gs(t)
(

αs(t)− βs
)

. (18)

3.3.2. Scheme for Constructing a ρ-Exponential Observer for a t-Family of Time-Invariant Fast
Subsystems.

1) Let the t-family of fast subsystems (9) be completely observable (Statement 4). By the
canonical Frobenius form (A0

f , c
0
f ) of the t-family (9) we mean a set of systems, each of which

is the canonical Frobenius form of the corresponding fast subsystem. To find it, we construct a
characteristic polynomial of the t-family (9). For each t ∈ T its coefficients define the vector αf (t) =
(α0(t), α1(t), . . . , αn2−1(t))

′ coefficients of the canonical Frobenius form of the corresponding fast
subsystem.

2) Calculate the transition matrix to the canonical Frobenius form for the t-family of fast
subsystems: Gf (t) = S−1

f (t)S0
f (t), where Sf (t) and S0

f (t) are the observability matrices of the t-
family of fast subsystems and its canonical Frobenius form, calculated using the formulas (12), (13)
with matrices A4(t), c2(t) and A0

f (t), c
0
f (t), respectively.

3) Choose real numbers λ1, λ2, . . . , λn2
that, for a given positive number ρ, satisfy the inequality

λi < −ρ, i = 1, 2, . . . , n2.

4) Form a n2-vector βf = (β0, β1, . . . , βn2−1)
′ with constant elements such that (ξ − λ1)(ξ − λ2)

· · · (ξ − λn2
) = ξn1 − βn1−1ξ

n−2 − · · · − β1ξ − β0.

5) Calculate the gain vector kf (t) for the observer of the t-family of fast subsystems:

kf (t) = Gf (t) (αf (t)− βf ) . (19)

Note that the function kf (t), t ∈ T, defined in this way inherits the properties of smoothness
and continuity of the functions αf (t), and hence the coefficients A4(t), c2(t) of the t-family of fast
subsystems.

4. COMPOSITE OBSERVER OF LTVSVS

4.1. Robust µ-Asymptotic ρ-Exponential Observer of LTVSPS

Let ρ > 0 be given.

Theorem 1. Let

(i) for some matrix Ps ∈ Un1
(T ) the conditions of Statements 2, 3 are satisfied and DS (As, cs)

(8) has the canonical Frobenius form under the action of the Lyapunov group L(n1);
(ii) for the DS (8) a ρ-exponential observer with a gain vector ks(t) (18) and an estimation

coefficient cρs was constructed;
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(iii) the conditions of the Statement 4 are satisfied;
(iv) for the t-family of fast subsystems (A4, c2)(t) (9) a µ0ρ-exponential observer with a gain

vector kf (t) (19) and an estimation coefficient cρf was constructed;
(v) matrix functions

Ã1(t) = A1(t)− k1(t)c1(t), Ã2(t) = A2(t)− k1(t)c2(t),

Ã3(t) = A3(t)− k2(t)c1(t), Ã4(t) = A4(t)− k2(t)c2(t),
(20)

where

k1(t) = A2(t)A
−1
4 (t)kf (t) + ks(t)[En2

− c2(t)A
−1
4 (t)kf (t)], k2(t) = kf (t), (21)

are continuously differentiable and bounded, derivatives of functions Ãi(t), i = 2, 3, 4, are bounded
on T ;

(vi) Reλ(Ã4(t)) 6 −γ1 < 0, γ1 = const > 0, ∀t > t0.

Then there exists µ∗ ∈ (0, µ0] such that the system

ẇx(t) = Ã1(t)wx(t) + Ã2(t)wy(t) + k1(t)v(t), wx ∈ R
n1 , wy ∈ R

n2 ,

µẇy(t) = Ã3(t)wx(t) + Ã4(t)wy(t) + k2(t)v(t), t > t0,

wx(0) = 0, wy(0) = 0,

(22)

is a robust µ-asymptotic ρ-exponential observer of the LTVSPS (5) family {A, c}µ∗ .

The proof of Theorem 1 is given in Appendix.

Note that the requirement for the existence of a canonical Frobenius form for the DS weakens the
requirement for the existence of a canonical Frobenius form for the original LTVSPS. For example,
a system like ẋ(t) = |t− 1|x(t) + (1− |t− 1|)y(t), µẏ(t) = tx(t)− ty(t), v(t) = y(t) does not have
the canonical Frobenius form [24, p. 73, Theorem 3.4]. At the same time, the DS ẋs(t) = xs(t),
vs(t) = xs(t), for this system has the form of the canonical Frobenius form. For a t-family of time-
invariant fast subsystems, the canonical Frobenius form always exists if the condition of complete
observability is satisfied (Statement 4). For the example given here, the DS has the form d

dτ
yf (τ) =

−t yf (τ), vf (τ) = yf (τ) and is completely observable.

4.2. Algorithm for Constructing a Robust µ-Asymptotic
ρ-Exponential Observer of the LTVSPS (5)

The following algorithm follows from the proof of Theorem 1 (see Appendix).

1. Construct the DS (8) and check the fulfillment of the conditions (i) of Theorem 1. If they
are not satisfied for any Ps, then the DS is not uniformly observable and, therefore, there is no
canonical Frobenius form for it. Notice, that one of the matrices Ps for which the conditions of the
Statement 2 are satisfied is a matrix Ps of the form (18) from [5], which is constructed according
to the parameters of the DS (8).

2. Construct the t-family of fast subsystems (9) and check the fulfillment of the conditions (iii)
of Theorem 1.

3. Set the desired value for the rate of exponential decrease in observation errors ρ > 0.

4. Calculate the gain vector ks(t) of ρ-exponential observer for the DS (8) according to (18)
(item 3.3.1).

5. Calculate the gain vector kf (t) of µ0ρ-exponential observer for the t-family of fast subsys-
tems (9) using (19) (item 3.3.2).

6. Calculate the coefficients k1(t), k2(t) using (21).

7. Check the fulfillment of the conditions (v) and (vi) of Theorem 1.

8. Form composite observer (22).

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 4 2024



382 TSEKHAN

5. REDUCED OBSERVERS OF LTVSPS

The observer’s state (22) approaches the O(µ)-approximation of the LTVSPS state (5) with an
exponential rate ρ, which can be chosen arbitrarily. However, if the value of the small parameter µ
is very small or unknown, then it is difficult to practically implement the observer (22). In this
regard, it is advisable to evaluate the state of the original system using a system that does not have
“fast” observer modes (22).

Similar to [16], we introduce two reduced observers of the LTVSPS.

According to the first approach, an asymptotic Luenberger observer (14) is constructed for the
DS (8) of the original LTVSPS (5). In [16] for time-invariant SPS it is proven that if matrices of the
DS (8) and the BLS (9) are Hurwitz and the DS is observable, then the asymptotic observer of the
DS is a µ-asymptotic observer of the original LTISPS. Following the scheme of proof of Theorem 4
from [16] using Theorem 6.1. [32, p. 227], a similar result can be proven for the LTVSPS.

Theorem 2. Let the conditions of Statements 1, 5 be satisfied. Then there exists µ∗ > 0 such
that the system

ẇsx(t) = (As(t)− ks(t)cs(t))wsx(t) + ks(t)v(t),

wsy = −A−1
4 (t)A3(t)wsx(t), t > t0,

wsx ∈ R
n1 , wsy ∈ R

n2 , wsx(0) = 0,

(23)

is a robust µ-asymptotic ρ-exponential observer of the LTVSPS (5) family {A, c}µ∗ .

According to the second approach, the degenerate system is constructed for the observer (22),
which is taken to be the observer of the original LTVSPS (5).

Theorem 3. Let the conditions of Theorem 1 be satisfied. Then there exists µ∗ > 0 such that the
system

ẇxs(t) =
(

Ã1(t)− Ã2(t)Ã
−1
4 (t)Ã3(t)

)

wxs(t) +
(

k1(t)− Ã2(t)Ã
−1
4 (t)k2(t)

)

v(t),

wys(t) = −Ã−1
4 (t)Ã3(t)wxs(t)− Ã−1

4 (t)k2(t)v(t), t > t0, (24)

wxs ∈ R
n1 , wys ∈ R

n2 , wxs(0) = 0,

is a robust µ-asymptotic ρ-exponential observer of the LTVSPS (5) family {A, c}µ∗ .

6. EXAMPLES

Let us consider numerical examples illustrating the application of the proposed method for
constructing robust µ-asymptotic ρ-exponencial LTVSPS observers. The practical implementation
of the method uses the algorithm for constructing a robust µ-asymptotic ρ-exponential observer
of the LTVSPS (5) outlined in Section 4.2 (items 1–8) and schemes for constructing ρ-exponential
observers for subsystems from sections 3.3.1 and 3.3.2.

Example 1. Let’s consider LTVSPS

ẋ1(t) = (α(t)− 1)x2(t) + (2− α(t))y(t), ẋ2(t) = −x1(t)− x2(t),

µẏ(t) = x2(t)− y(t), v(t) = y(t), t ∈ T,
(25)

whose matrices have the form: A1(t) =

(

0 α(t)− 1
−1 −1

)

, A2(t) =

(

2− α(t)
0

)

, A3(t) =
(

0 1
)

,

A4(t) =
(

−1
)

, c1(t) =
(

0 0
)

, c2(t) =
(

1
)

and the function α(t) is bounded and continuously

differentiable on T with bounded derivative.
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1. The degenerate system for the LTVSPS (25):

ẋs1(t) = xs2(t), ẋs2(t) = −xs1(t)− xs2(t), vs(t) = xs2(t), (26)

where As =

(

0 1
−1 −1

)

, cs =
(

0, 1
)

, is time-invariant and has a non-singular observability

matrix Ss(t) =

(

0 1
−1 −1

)

, this means that for the DS (26) there is a canonical Frobenius form

and, according to Statement 3, the condition (i) of Theorem 1 is satisfied.

The transformation (16) of the DS (26) by using matrixGs(t) =

(

−1 0
0 1

)

leads to the canonical

Frobenius form (A0
s, c

0
s), A

0
s(t) =

(

0 −1
1 −1

)

, c0s(t) = (0, 1), where αs(t) = (−1, −1)′.

2. The t-family of fast subsystems for LTVSPS (25)

dỹ(τ)

dτ
= −ỹ(τ), ṽf (τ) = ỹ(τ), t ∈ T, (27)

has an observability matrix Sf (t) = (1), rank Sf (t) = 1, ∀t ∈ T , then, according to Statement 4,
the condition (iii) of Theorem 1 is satisfied.

3. Let us set the rate of exponential decrease in observer errors: ρ = 2.

4. Let’s take λi = −3, i = 1, 2 and calculate βs = (−9,−6)′ and ks(t) = (−8, 5)′.

5. The t-family of fast subsystems (27) already has a Frobenius form with αf = (−1), so
Gf (t) = 1. Let’s choose λf = −3, then βf = (−3) and kf (t) =(2).

6. Calculate the coefficients (21): k1(t) = (2α(t) − 28, 15)′ , k2 = (2).

7. Matrix functions (20) Ã1(t) = A1(t), Ã2(t) = (−3α(t) + 30, −15)′, Ã3(t) = (0, 1), Ã4(t) =
(−3) for LTVSPS (25) satisfy the conditions (v), (vi) of Theorem 1.

8. Finally, the robust µ-asymptotic ρ-exponential composite full-order observer (22) for the
LTVSPS (25) for ρ = 2 will take the form:

ẇx1(t) = (α(t) − 1)wx2(t)− 3(α(t) − 10)wy(t) + 2(α(t) − 14)v(t),

ẇx2(t) = −wx1(t)− wx2(t)− 15wy(t) + 15v(t),

µẇy(t) = wx2(t)− 3wy(t) + 2v(t).

(28)

Figures 1, 2 and Table 1 show the results of numerical experiments (performed using Wolfram
Mathematica) with the model (25) with initial conditions x1(0) = 1, x2(0) = 0, y(0) = 0, with
α(t) = sin(t),

Figure 1 shows the dynamics of errors εx1 (thick), εx2 (thin), εy (dashed line) of the composite
observer (22) for the LTVSPS (25) at µ = 0.01. Figure 1a corresponds to the choice of λi = −3,
Fig. 1b corresponds to λi = −6 and demonstrates the change in the dynamics of observer errors
with increasing exponential decay rate.

To compare the quality of estimation for different values of the small parameter, we calculate
the integral norm of the observer (28) errors on the interval [0, 30] (Table 1).

Table 1. Integral norm of the observer (28) errors, α(t) = sin(t)

µ = 0.5 µ = 0.1 µ = 0.01

||εx1||1 0.6755937 0.668459 0.666458
||εx2||1 0.112656 0.111410 0.111141
||εy||1 0.037552 0.0371366 0.030469
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Fig. 1. Dynamics of errors of the composite observer (22) for the LTVSPS (25).

Fig. 2. Dynamics of errors of reduced observers (29) and (30) for the LTVSPS (25).

Comparison of error estimates from Table 1 confirms that as µ decreases, the estimation error
decreases.

The reduced observer (23) for the LTVSPS (25) has the form

ẇsx1(t) = 9wsx2(t)− 8v(t),

ẇsx2(t) = −wsx1(t)− 6wsx2(t) + 5v(t),

wsy = wsx2(t), wsx1(0) = 0, wsx2(0) = 0.

(29)

The reduced observer (24) for the LTVSPS (25) has the form

ẇxs1(t) = 9wxs2(t)− 8v(t), wxs1(0) = 0,

ẇxs2(t) = −wxs1(t)− 6wxs2(t) + 5v(t), wxs2(0) = 0,

wys(t) =
1

3
wxs2(t) +

2

3
v(t).

(30)

Error dynamics εx1 (thick), εx2 (thin), εy (dashed line) of reduced observers (29) and (30) for
the LTVSPS (25) at α(t) = sin(t), µ = 0.01, λi = −3 shown in Fig. 2: Fig. 2a for observer (29) and
Fig. 2b for observer (30).

Example 2. Let’s consider LTVSPS

ẋ1 (t) =

(

ϕ(t)−
γ̇(t)

γ(t)
− δ(t)

)

x1 (t) + ζ(t)x2 (t) + δ(t)y (t) ,

ẋ2 (t) = (γ(t)− α(t)) x1 (t) + ξ(t)x2 (t) + α(t)y (t) ,

µẏ (t) = x1 (t)− y(t),

v(t) = −x1(t) + x2(t) + y(t), t ∈ T,

(31)
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where γ(t) = sin(t) + 2, ϕ(t) = sin(t) + 1, ζ = cos(t), ξ = − sin(t)− 1, δ(t) = sin(t) + 1− cos(t)
sin(t)+2 ,

α(t) is not twice continuously differentiable at at least one point t ∈ T .

The system (31) in the form (1)–(2) has parameters n1 = 2, n2 = m = 1 and matrices:

A1 =







ϕ(t)−
γ̇(t)

γ(t)
− δ(t) ζ(t)

γ(t)− α(t) ξ(t)






, A2 =

(

δ(t)

α(t)

)

,

A3 =
(

1 0
)

, A4 =
(

−1
)

, C1 =
(

−1 1
)

, C2 =
(

1
)

.

For LTVSPS (31) the matrix function A(t, µ) (4) is not twice continuously differentiable and
for such a system there is no classical observability matrix. Therefore, constructing an observer
according to the scheme [5] directly for the LTVSPS (31) is impossible. However, as shown below,
it is possible to construct an observer (22) for the system (31).

1. The DS (8) for the LTVSPS (31)

˙̄x1 (t) =

(

ϕ(t)−
γ̇(t)

γ(t)

)

x̄1 (t) + ζ(t)x̄2 (t) ,

˙̄x2 (t) = γ(t)x̄1 (t) + ξ(t)x̄2 (t) ,

v̄s(t) = x̄2 (t) , t ∈ T,

(32)

has the class {E2, 2}. For the DS (32) the classical observability matrix is defined: SE2
(t) =

(

0 1
γ ξ

)

. Since rank SE2
(t) = 2 = n1, ∀t ∈ T , then according to the Statement 3 the DS (32) is

uniformly observable and the condition (i) of Theorem 1 is satisfied.

2. The t-family of fast subsystems for the LTVSPS (31) coincides with (27), which means that
condition (iii) of Theorem 1 is satisfied.

3. Let us set the rate of exponential decrease in observer errors: ρ = 2.

4. Choose λi = −3 and calculate βs = (−9,−6)′.

5. The transformation (16) of the DS (32) using matrix Gs(t) =

(

1
γ

ϕ
γ

0 1

)

leads to the canonical

Frobenius form (17) with αs(t) = (−ϕ̇− ξϕ+ ζγ, ϕ+ ξ)′. Calculated gain vectors for subsystems:

ks(t) =

(

γ−1
(

9 + 6ϕ+ ϕ2 − φ̇
)

+ ζ

6 + ξ + ϕ

)

, kf = (2).

6. By (21) we have: k1(t) =

(

−2δ + 3ζ + 3γ−1
(

(ϕ+ 3)2 − ϕ̇
)

−2α+ 3(6 + ξ + ϕ)

)

, k2(t) = (2).

7. Matrix functions (20)

Ã1(t) =

(

3 (ζ − δ) + ϕ+ γ−1
(

3 (ϕ+ 3)2 − γ̇ − 3ϕ̇
)

2 (δ − ζ)− 3γ−1
(

(ϕ+ 3)2 − ϕ̇
)

−3α+ γ + 3(6 + ξ + ϕ) 2α+ ξ − 3(6 + ξ + ϕ)

)

,

Ã2(t) =

(

3δ − 3ζ − 3γ−1
(

(ϕ+ 3)2 − ϕ̇
)

3α − 3(6 + ξ + ϕ)

)

, Ã3(t) =
(

3 −2
)

, Ã4(t) =
(

−3
)

for LTVSPS (31) satisfy the conditions (v), (vi) of Theorem 1.

8. According to Theorem 1, the robust µ-asymptotic ρ-exponential composite full-order observer
for LTVSPS (31) for ρ = 2 has the form (22) with the coefficients k1(t), k2(t) calculated in item 6.
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Fig. 3. Dynamics of composite observer (22) errors for the LTVSPS (31).

Figure 3 shows the dynamics of errors εx1 (thick), εx2 (thin), εy (dashed line) of composite
observer (22) for the LTVSPS (31) with initial conditions x1(0) = 1, x2(0) = 0, y(0) = 1 at µ = 0.01.

7. CONCLUSION

The method proposed in this work for synthesizing observers of the LTVSPS states allows us
to split the problem into solving independent subproblems of synthesizing observers for systems
of smaller dimension, some of which are time-invariant, to ensure the robustness of observers
with respect to the small parameter and to significantly weaken the known requirements for the
smoothness of coefficients. The vector of gains of the composite observer is expressed through
the gains of subsystems independent of the small parameter, corresponding to the separation of
time scales. The state estimation error with an arbitrary predetermined exponential decay rate
converges to an infinitesimal value of the same order of smallness as the small parameter.

Theorem 1 provides sufficient conditions for the existence of a robust µ-asymptotic ρ-exponential
LTVSPS observer. The µ-asymptotic composite full-order (22) and reduced-order (23), (24) ob-
servers are constructed. A constructive algorithm for calculating the gain vector (18), (19), (21) of
the composite observer is presented, and illustrative examples are given.

When constructing the robust µ-asymptotic ρ-exponential observer for the LTVSPS ρ should
be chosen so as to ensure the desired rate of convergence of observation errors into the O(µ)-
neighborhood of zero.

Note that when constructing the µ-asymptotic ρ-exponential LTVSPS observer, the existence
of a canonical Frobenius form and quasi-differentiability of the output functions of the original
LTVSPS are not required.

The results obtained can be used in the design of control systems, identification and diagnostics
of dynamic systems described by linear time-varying singularly perturbed systems.
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APPENDIX

Proof of Theorem 1.

It follows from (i) that the DS (As, cs) (8) is uniformly observable and for it there exists a
ρ-exponential observer. Under assumption (iii), there exists a µ0ρ-exponential observer for the
t-family of fast subsystems (9).
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We will look for a full-order observer for the LTVSPS (5) in the form of the system (7). We will
look for the gain vector K(t, µ) in the form

K(t, µ) = diag

{

En1
,
1

µ
En2

}

(

k1(t)
k2(t)

)

, k1(t) ∈ R
n1 , k2(t) ∈ R

n2 ,

where k1(t), k2(t) are not yet defined. Then the observer (7) will take the form (22), and the error
dynamics equations εx(t, µ) = x(t, µ)− wx(t, µ), εy(t, µ) = y(t, µ)− wy(t, µ) for the observer (22)
will look like:

ε̇x(t) = Ã1(t)εx(t) + Ã2(t)εy(t), εx ∈ R
n1 ,

µε̇y(t) = Ã3(t)εx(t) + Ã4(t)εy(t), εy ∈ R
n2 , t > t0.

(A.1)

Since the observation error dynamics system (A.1) has the form of the LTVSPS (1)–(2), then
when the assumptions (v), (vi) of Theorem 1 for the error system (A.1) the conditions of The-
orem 3.1 from [32, p. 212] and, therefore, there is a decoupling Lyapunov transformation of the
form (3.4) from [32, p. 210] with continuously differentiable matrices L̃(t, µ), H̃(t, µ) bounded on T ,
which satisfy the following system (in order not to clutter the notation, we will omit the dependence
of functions on the argument t in some places):

Ã3 − Ã4L̃(µ) + µL̃(µ)
(

Ã1 − Ã2L̃(µ)
)

= µ
˙̃
L(µ), (A.2)

µ
[

Ã1 − Ã2L̃(µ)
]

H̃(µ)− H̃(µ)
[

Ã4 + µL̃(µ)Ã2

]

+ Ã2 = µ
˙̃
H(µ). (A.3)

From (A.2), (A.3) taking into account (i), (vi) we have the approximation:

L̃ (t, µ) = A−1
4 (t) k2(t)c2(t)L̃(t, µ)Ã3(t) +O(µ),

L̃(t, µ) = Ã−1
4 (t)Ã3(t) +O(µ),

H̃ (t, µ) =
(

H̃ (t, µ) k2(t)c2(t) + Ã2(t)
)

A−1
4 (t) +O(µ),

H̃ (t, µ) = Ã2(t)Ã
−1
4 (t) +O(µ).

(A.4)

As a result of the decoupling transformation, the error dynamics system (A.1) will take the form
of a system separated by time scales:

ε̇ξ(t) = Aξ(t, µ)εξ(t), εξ ∈ R
n1 ,

µε̇η(t) = Aη(t, µ)εη(t), εη ∈ R
n2 , t > t0,

(A.5)

where

Aξ(t, µ) = Ã1(t)− Ã2(t)L̃(t, µ), Aη(t, µ) = Ã4(t) + µL̃(t, µ)Ã2(t). (A.6)

Moreover, according to Statement 1, the solutions (A.1) and (A.5) satisfy the following equalities:

εξ(t) = εx(t) +O(µ), εx(t) = εξ(t) +O(µ),

εη(t) = Ã−1
4 (t)Ã3(t)εx(t) + εy(τ) +O(µ),

εy(t) = −Ã−1
4 (t)Ã3(t)εξ(t) + εη(τ) +O(µ).

(A.7)

Let’s put

k2(t) = kf (t) (A.8)
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and we will look for k1(t) in the form:

k1(t) = ks(t) + H̃0(t)k2(t), H̃0(t) = (A2(t)− ks(t)c2(t))A
−1
4 (t). (A.9)

Let’s substitute (A.9), (A.8) into (A.6) and perform sequential transformations:

Aξ(µ)
(A.9)
= A1 −

(

ks + H̃0k2

)

c1 −
(

A2 −
(

ks + H̃0k2

)

c2

)

L̃(µ)

=
(

A1 −A2L̃(µ)
)

−
(

ks + H̃0k2

) (

c1 − c2L̃(µ)
)

(A.4)
= A1 −A2A

−1
4

(

k2c2L̃(µ) +A3 − k2c1

)

−
(

ks + H̃0k2

) [

c1 − c2A
−1
4

(

k2c2L̃(µ) +A3 − k2c1

)]

+O(µ)

(As,cs)
= As − kscs +

(

−A2 + ksc2 + H̃0k2c2

)

A−1
4 k2c2L̃(µ)

+
(

A2 − ksc2 − H̃0A4

)

A−1
4 k2c1 + H̃0k2c2A

−1
4 (A3 − k2c1) +O(µ)

(A.9)
= As − kscs ++H̃0k2c2A

−1
4

(

A4L̃(µ) + k2c2L̃(µ)− k2c1 +A3

)

+O(µ)

(A.4)
= As − kscs +O(µ).

Thus, for Aξ(t, µ) with k1(t), k2(t) of the form (A.9), (A.8) the approximation is valid:

Aξ(t, µ) = As(t)− ks(t)cs(t) +O(µ). (A.10)

Further, from (A.6) it follows

Aη(t, µ) = (A4(t)− k2(t)c2(t)) +O(µ). (A.11)

Thus, combining (A.10) and (A.11) from (A.5) we get:

ε̇ξ(t) = (As(t)− ks(t)cs(t) +O(µ)) εξ(t),

µε̇η(t) = (A4(t)− k2(t)c2(t) +O(µ)) εη(t), t > t0.
(A.12)

Since in (A.12) ks(t), k2(t) are the gain vectors for the observer (14) of the DS (8) and the
observer (15) of the t-family of fast subsystems, then the parameters of the error system (A.12)
are O(µ)-close to the parameters of the error dynamics system for the DS and the t-family of fast
subsystems observers with gain vectors ks and kf , respectively. Therefore, due to the continuous
dependence of the solution (A.12) on additive perturbations of the system coefficients, the following

estimates are valid: ||εξ(t)|| 6 cρs exp (−ρ(t− t̄)) + O(µ), t > t̄, ||εη(t)|| 6 cρf exp
(

−µ0ρ
(t−t̄)
µ

)

+

O(µ), t > t̄, whence, taking into account (A.7), it follows that the estimates are fair

||εx(t)|| 6 cρs exp(−ρ(t− t̄)) +O(µ), t > t̄,

||εy(t)|| 6 cρs ||Ã
−1
4 (t)Ã3(t)|| exp(−ρ(t− t̄)) + cρf exp

(

−µ0ρ

(

t− t̄

µ

))

+O(µ), t > t̄.

Let cρ = max{cρs , cρf , cρs ||Ã
−1
4 (t)Ã3(t)||}. For µ ∈ (0, µ0] the estimate exp

(

−µ0ρ
(

t−t̄
µ

))

<

exp (−ρ (t− t̄)) , t > t̄, which implies the validity of the estimates ||ε(t, µ)|| 6 cρ exp(−ρ(t− t̄)) +
O(µ), t > t̄, and, according to the Definition 7 and from the coincidence of (A.9) and (21) imply
fairness of Theorem 1.
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